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T
he separation of similarly sized ob-
jects is an important problem in bio-
medical research as well as in tech-

nological purification of biomolecules and
nanoparticles. Compared to standard chro-
matographymethods of separation, sample
purification methods based on the mem-
brane technologies are more efficient as
they allow for in principle continuous filter-
ing process. However, traditional filtering
membranes made from polymers frequently
suffer from low membrane permeability to
the filtered objects, clogging, and sample
loss due to the long channels and large pore
size distributions.1

Modern day nanotechnology enables
creation of artificial nanoporous mem-
branes made of a variety of materials by
various methods. In these membranes, all
nanopore characterisitcs, its length and dia-
meter distribution as well as the sample
porocity and membrane surface chemistry,
can be controlled with high accuracy, thus
enabling their applications for single mole-
cule sensing and filtration.2�7 For example,
the pores can be made as small as 1 nm in
diameter making it potentially suitable for
sequencing DNA molecules.8

One of the most versatile type of mem-
branes are semiconductor membranes9,10

which could consist of one or several layers
of the doped Si.10,11 In addition to the control
over the geometric characteristics of pores,

they also allow for the control of the local
electrostatic potential distribution. This is
achieved by applying voltage to the mem-
brane layers, thus changing the potential in-
side the membrane and in the vicinity of the
nanopore. Originally, these membranes were
studied for the tunable control over the DNA
translocation.12 In this work, we broaden the
scope and consider the possibility of applying
these membranes to tunable filtering and
separation of nanoparticles and proteins.
Specifically, we perform numerical analysis

of a negatively charged nanoparticle translo-
cation through the nanopore created in the
nanometer-thin, heavily n-doped Si mem-
brane. We use Brownian Dynamics approach
to describe themotion of the nanoparticles in
the self-consistent electroststicfieldproduced
by all charges (membrane and electrolyte) in
the system subjected to the membrane bias.
On the bases of these microscopic simula-
tions, we then asses the possibility to utilize
our voltage controlled membrane for the
macroscopic filtering of the charged nano-
particles. By changing themembrane voltage,
we show that the sieving factor of such a
membrane filter and the filtering time can be
changed by the order of magnitude.
The results and methods presented in

our work also provide a bridge between
the microscopic simulations of individual
macromolecules such as proteins or nano-
particles,13�15 which do not account for the
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ABSTRACT Translocation dynamics of nanoparticles permeating through the nano-

pore in an n-Si semiconductor membrane is studied. With the use of Brownian Dynamics

to describe the motion of the charged nanoparticles in the self-consistent membrane-

electrolyte electrostatic potential, we asses the possibility of using our voltage controlled

membrane for the macroscopic filtering of the charged nanoparticles. The results indicate

that the tunable local electric field inside the membrane can effectively control interaction of a nanoparticle with the nanopore by either blocking its

passage or increasing the translocation rate. The effect is particularly strong for larger nanoparticles due to their stronger interaction with the membrane

while in the nanopore. By extracting the membrane permeability from our microsopic simulations, we compute the macroscopic sieving factors and show

that the size selectivity of the membrane can be tuned by the applied voltage.
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macroscopic filtering mechanisms, and a macroscopic
continuum modeling of the flow of these objects
through nanoporous membranes,16�18 which does
not take into account effects of the local environment
of the filtered particles. Even though in this work we
focus on the doped Si membrane, our results can also
be applied to other voltage controlled membranes
such as those made from graphene19�21 or based on
the local electrostatic control using nanowires22 or
nanotubes.23 Our method of characterization of the
membrane filtering properties can also be easily
adapted to the dielectric membranes such as those
made of SiN4,5 or polynanocrystalline (pnc)-Si.2

RESULTS AND DISCUSSION

Electrostatic Potential. The distribution of the electro-
static potential obtained from the self-consistent solu-
tion of the Poisson equation (9) is shown in Figure 1.
Since there is no applied electrolyte bias, the potential
is symmetric with respect to the membrane center (x =
130 Å). One can also see that for the positive mem-
brane bias (Figure 1A), the potential is higher than its
asymptotic value in the bulk of the electrolyte where
the effects of the membrane charges and voltage are
screened off by the solution charges. This is because
the application of the large positive bias on the mem-
brane depletes the mobile charges (electrons in this
case), thus leaving the membrane positively charged
(due to the donor ions in the semiconductor layer). This
large positive charge, partially screened by the nega-
tive surface charge, is nevertheless strong enough to
produce a larger than the bulk potential within the
confined nanopore volume. The positive charge in
the membrane also attracts negatively charged nano-
particles as if the nanopore diameter increases be-
yond its geometrical value (the capture rate increases).

For the negative membrane bias case, Vm = �1 V,
shown in Figure 1B, the large negative voltage on the
membrane allows for the almost complete compensa-
tion of the charges within the membrane, thus leaving
only the surface charge as the sole membrane charge.
(This potential is very similar to the one for the
conventional SiO2 membrane, for comparison see
Figure 1 in Supporting Information.) This negative
charge repels negatively charged nanoparticles, so
that effectively, the diameter of the nanopore de-
creases below its geometric diameter (the capture rate
decreases). Because of the different values of the donor
concentration in the semiconductor and the surface
charge density (ND and Ns, respectively, see Method)
and their spatial distributions, the potential changes at
Vm = ( 1 V are slightly asymmetric with respect to the
bulk potential. Note also that the variation of the
potential along the nanopores cross section (along
the z-direction) is also consistent with these interpreta-
tions: the potential increases (decreases) toward the
nanopore surface for Vm = 1 (�1) V.

This effect of the charge inversion, which was
discussed by us earlier,24modifying the effective diameter
of the pore opening (and thus, its capture rate) is the
basis of our tunable filtering mechanism of nanometer-
sized particles as described below. As we do not apply in
this work the electrolyte bias, the possible mechanism of
the filtering is the differential equilibration rates or apply-
ing the pressure difference.

Translocation Dynamics of a Nanoparticle. In this section,
we analyze the translocation of a charged nanoparticle
through the nanopore when no electrolyte bias is
applied. In this case, the particle diffuses in the poten-
tials shown in Figure 1. For eachmembrane voltage, we
study the translational Brownian Dynamics (BD) of
nanoparticles with radii 4�16 Å. Before each simula-
tion, the nanoparticle is placed in the bounding vol-
ume (see Figure 7) so that its center of mass is 40 Å
above the pore's entrance. From the analysis of the
particle trajectories (≈103 simulations for each case),
we extract the time which the particle spends above
the pore in the bounding volume before it enters the
pore and successfully translocates to the other end (the

Figure 1. Electrostatic potentialj(rB) for (A) Vm = 1 V and (B)
Vm = �1 V. Note that, in order to emphasize the details of
the potential distribution in the nanopore, the potential is
cut off at 0.3 V in (A) and �0.2 V in (B). The membrane
outline is shown in white.
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waiting times, τw), and time necessary to translocate
through the pore (the translocation or the dwell time, τt).
The histograms of the waiting time distributions are
shown in Figure 2 for three different nanoparticle sizes
and membrane voltages Vm = (1 V. As expected, the
smaller the radius of the particle, the less time it spends
finding the pore (smaller τw), but these times are very
much different for Vm = (1 V.

The underlying physical mechanism describing the
behavior of thenanoparticle is that of a particle diffusing
in the solution attempting first to locate the nanopore
and then successfully permeate it.25 This mechanism is
similar in the essence to the process of diffusion of a
particle initially confined to a volume Vb and trying to
exit through a hole of a small diameter. Such processes
were extensively studied in view of their importance in
determination of the time scale of excitations observed
in dendritic spines, the sites where synapses are located
in neurons.26 The dendritic spines can be schematically
represented by a large head of volume Vb with a thin
long neck of length Lm and diameter Dpore (Lm . Dpore)
throughwhich signalingmolecules canescape.With the
help of the BD simulations, it was shown26,27 that the
time for the particle to stay in the head of the dendritic
spine (the “survival time”) is28

τw � ξ

kBT

4LmVb
πD2

pore

" #
(1)

On the other hand, a molecule in the head of the
dendritic spine tunneling through its long neck to
escape is similar to the setup of our BD simulations
where we initially confine the nanoparticle in the large
volume above the long and narrow nanopore and then
let it find the pore's entrance and permeate the
membrane, cf. Figure 7 of the present work with, for
example, Figure 1 in ref 27 or Figure 2e in ref 29. It also
follows from these works that the survival probability
(which in our case is the probability for a particle to
enter the pore at a time t and successfully permeate it)
has a single exponential dependenceexp(�t/τw) on time.
As one can see from Figure 2, our computed distribu-
tions are in excellent agreement with this dependence.

We should also emphsize that similar single expo-
nential dependence was recently observed in experi-
mental study of the time intervals between trans-
location events for nanoparticles.5 In ref 5, this decay
was interpreted as a consequence of the absence of
interaction between the particles when, at the suffi-
ciently low density, they translocate through the
nanopore one by one without competition. In our
simulations, we also consider translocations of indivi-
dual particles assuming that once a particle is gone,
another one immediately appears in the bounding
volume, and the process repeats. In this interpretation,
the bounding volume is equal to the volume per one
particle which gives us the concentration of filtering
particles of about 30 μM.

The waiting times, τw, for different Rnc and Vm are
shown in Figure 3. As one can see, the larger the size of
the particle, the stronger the influence which the
membrane exerts on its dynamics. The differences in
values become especially pronounced for larger Rnc:
for example, for 16 Å radius, τw is almost 5 times smaller
for Vm = 1 V case than for �1 V. This is because of the
increased effective diameter of the pore due to the
strong electric field near the entrance to the pore (see
Figure 1), which enhances the rate with which particles
are captured. For the negative membrane bias, the
electric field near the entrance repels the particles

Figure 2. Histogramsof thewaiting timedistributions P(t) for
thenanoparticle radii 4, 8, and16Åand forVm=1V (blue) and
Vm =�1 V (green). Red curves show the envelope probability
density function τw

�1 exp(�t/τw), see text for discussion.

Figure 3. Waiting times τw vs nanoparticle radius Rnc for
Vm = 1 V (blue) and Vm = �1 V (green). Inset shows that the
τw� (1� 2Rnc/Dpore)

�R in the studied range of particle sizes.
With the use of linear extrapolation, this dependence allows
us to extract values of τw for larger Rnc which would
otherwise be difficult to accurately compute: for example,
we obtain τw ∼ 400 μs for Rnc = 18 Å at Vm = �1 V.
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away from the pore and they have to spend much
longer time inside the bounding volume and make a
larger number of attempts to translocate through the
pore. These large differences in the waiting time values
also drastically affect the permeability of the mem-
brane as discussed in the following section where it is
shown that this quantity can be controlled by the bias
voltage applied to the membrane.

The dependence of the translocation time τt
(determined as the difference between the time the
particle enters the pore and the time it emerges at the
other end without re-entering) on the nanoparticle
radius and membrane voltage is presented in Figure 4.
It is seen that these dependencies have linear char-
acter, i.e., τt � Rnc. This is easily explained within the
one-dimensional diffusion model of the conditional
mean first passage time,30 according to which τt =
Lp
2/(6D) where D = kBT/ξ = kBT/(6πηRnc) is the nominal
diffusion coefficient of the spherical particle with
radius Rnc. This dependence is shown by the red line
in Figure 4. While in the nanopore, the particle's
interaction with it depends on the applied membrane
voltage which modifies the electrostatic potential pro-
file in it (Figure 1). This results in different effective
diffusion coefficients. By fitting the computed data
with the results of the simple diffusion model, we find
that the computed values of τt for the positive
(negative) membrane bias correspond to the 15%
decrease (increase) in the drag coefficient, so that it
takes longer (shorter) amount of time for it to translo-
cate through the nanopore. In other words, as can be
seen from Figures 3 and 4, at Vm =�1 V it takes longer
for the particle to get to the pore, but once in the pore,
it translocates faster. Although not central to the
purpose of the work, this correlation between the
translocation and waiting times is reminiscent of a
recent experimental work on optimization of the par-
ticle transport through synthetic nanopores where the
potential inside the channel was modulated with the
laser tweezers.31

Filtering of Nanoparticles. Although the drastically dif-
ferent values of the waiting times for Vm =( 1 V shown
in Figure 3 already indicate that the rate with which
particles penetrate through the membrane strongly
depends on the applied membrane voltage, by them-
selves, they do not describe the complete membrane
filtering process. Indeed, this process depends also on
the macroscopic diffusion of particles from the cis

(retentate) chamber toward the membrane. If this
process is very slow, with the time scale much larger
that either of the waiting times in Figure 3, the
membrane will play little role in hindering the flow of
these particles. As such, to describe macroscopic filter-
ing of particles, we need to compare the effective
resistance offered by the membrane with the resis-
tance of the fluid chamber filled with nanoparticles. In
the simple one-dimensional model, the latter one is

given by Ωc = ξW/kBT where W is the length of the
chamber. The membrane resistance (the inverse
permeability) was shown17,32 to be dependent on
the membrane thickness Lm, the pore's diameter Dpore,
the diffusion coefficient kBT/ξ of nanoparticles in the
retentate chamber, and the porocity of the membrane
N (the number of pores per unit area). In the limit of
Lm . Dpore, it is given by:

Ωm � ξ

kBTN

4Lm
πD2

pore

" #
(2)

With help of eq 1, we can rewrite the above
equation as

Ωm ¼ τw
NVb

(3)

thus relating the macroscopic membrane resistance
Ωm to the microscopic waiting time τw and the pore
density (membrane porosity). Note that N can be
varied in the broad range from 1 to 109 pores
per cm2.33

The computed in this way values of the membrane
Ωm and the chamber Ωc resistances as well as their
ratio β = Ωm/Ωc as functions of the translocating
nanoparticle radius are shown in Figure 5 for the same
two membrane voltages Vm = (1 V as in the previous
plots. One can see that the membrane resistance
increases as the particle gets larger as expected since
it becomes more difficult for a large nanoparticle to
enter the pore in order to achieve a successful translo-
cation. Also, because the waiting time is smaller for
Vm = 1 V, the membrane resistance is also weaker
for the same Rnc value. It is also interesting to note that
for our membrane parameters,Ωc (red line in Figure 5)
is actually smaller thanΩm for themajority of the parti-
cles (it is multiplied by 10 in Figure 5 for clarity), except
for small Rnc at Vm = 1 V when they are comparable,
which means that the membrane resistance is almost
always dominant (β . 1, see inset in Figure 5).

Figure 4. Translocation time τt vs Rnc for Vm = 1 V (blue) and
Vm = �1 V (green). Symbols show the average values
computed from the translocation time distributions (an
example histogram for Rnc = 16 Å is shown in the inset);
the solid lines show the dependencies computed from the
diffusion model with fitted values of the diffusion coeffi-
cient. The red dashed line is the theoretical dependence
calculated for the nominal diffusion coefficient kBT/ξ.
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To find how concentration c(x,t) of nanoparticles
changes in both retentate and filtrate chambers during
the filtration, we analytically solve the one-dimensional
diffusion equation in the x-direction along the nano-
pore axis17,34

Dc
Dt

¼ kBT

ξt

D2c
Dx2

, �W < x < W (4)

where initially all nanoparticles are located in the
retentate chamber to the left of the membrane, i.e.,
c(x < 0,t = 0) = c0 and c(x > 0,t = 0) = 0.

Assuming that themembrane thickness is much smal-
ler than the size of the filtration chamber, for the concen-
tration change across the membrane (at x = 0), we write

kBT

ξ

Dc
Dx

�����
x¼ 0

¼ Ω�1
m (cr � cl) (5)

where cr(l) is the concentration in the filtrate (retentate),
respectively.

The solution to this boundary-value problem can be
written as

c(x, t) ¼ c0
1
2
þ ∑

¥

n¼ 0

sinλn
λn þ cosλn sinλn

χn(x)

"

�exp �kTλ
2
nt

ξW2

 !#
(6)

χn(x) ¼
cos

λn
W

(x �W)

� �
, �W < x < 0

�cos
λn
W

(xþW)

� �
, 0 < x < W

8><
>: (7)

tanλn ¼ 2
βλn

(8)

One can see from the last equation that the ratio of the
membrane and chamber resistances β, see Figure 5,
determines the values of the eigenvalues λn. In particular,
in the limit of β . 1, λn ≈ (2/β)1/2 þ πn, so that the

characteristic time of the concentration change, given by
the leading term with n = 0 in eq 6, is ∼ΩmW/2.

To see how nanoparticle concentration increases in
the filtrate chamber (which is initially empty) during
the filtration process, we study the timedependence of
the sieving factor S defined as the ratio of the average
concentrations to the right CR and to the left CL of the
membrane, S(t) = CR/CL. This quantity is plotted in
Figure 6 for different radii of the nanoparticles Rnc,
membrane voltages Vm = (1 V, and filtration times.
One can see from this plot that for the positive
membrane voltage the sieving factor is always larger
for the same filtration times andnanoparticle sizes. This
is because of the smaller membrane resistance in this
case (see Figure 5) which means that the particles
permeate the membrane faster and their concentra-
tions equalize sooner. One can also notice that larger
nanoparticles permeate slower so that S for them is
also smaller. This allows for the filtering of the particles
by size: for example, at Vm =�1 V and filtration time of
12 h, the sieving factor for the 16 Å particles is about 10
times smaller than that for 4 Å ones, which means that
the concentration of these particles in the filtrate
chamber is 10 times smaller than in the retentate.

This plot also demonstrates the range of the filtering
tunability offered by ourmembrane. For example, when
Vm =�1 V, 4 and 16 Å particles can be easily separated
after 4 h (see Figure 6B) since, at this time, the sieving

Figure 5. Membrane (curves with symbols) and chamber
(red line) resistances computed from eq 3 vs the radius of
the nancrystals Rnc for Vm= 1 V (blue curve) and�1 V (green
curve). Ωc values are multiplied by 10 to bring them up to
the scale of the plot. Inset shows the ratio β =Ωm/Ωc vs Rnc.
For these calculation,s we took the chamber size W =
1 mm17 and the pore density N = 108 cm�2.33

Figure 6. Sieving factor S for different nanoparticle radii
Rnc, filtration times, and membrane voltages: (a) V = 1 V, (b)
V = �1 V.
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coefficients are S∼ 1 and S∼ 0.1 for Rnc = 4 Å and 16 Å,
respectively. However, to achieve thenoticeable separa-
tion between, for example, 10 and 16 Å particles at that
filtering time or earlier, we need to change the mem-
brane voltage to Vm = 1 V. Then, at 4 h, the sieving
factors for these sizes are ∼1 and ∼0.2 (Figure 6A),
whereas in order to reach the same values of S when
Vm = �1 V, one has to wait for more than 12 h.

We should also note the versatility of our membrane
which can be equally well used for various geometries of
the filtration systems. The filtering chamber length W is
usually defined by the problem at hand, and by changing
Vm, we canmodify themembrane resistanceΩm and the
sieving coefficients to compensate (in order to have the
same characteristic filtering time ∼ ΩmW) and thus
ensure themaximumpossible separation rate andquality.

CONCLUSION

In this work, we considered the translocation of the
charged spherical nanoparticles of variable radii
through the nanoporous semiconducting membrane
in order to study the possibility of the tunable filtering
of these objects. To gain insight into the microscopic
dynamics of the nanoparticles, we utilized the coarse-
grained Brownian Dynamics technique to describe the
motion of a nanoparticle in the self-consistent electro-
static potential created by the charges in the mem-
brane and electrolyte as well as the appliedmembrane
voltage. The results of these simulations, particularly,
the times which nanoparticles spend trying to locate
the pore, were then applied to evaluate the mem-
brane resistance in order to study the continuous flow
of the particles within a diffusion approximation. This
macroscopic approach allowed us to calculate particle
concentration changes and extract sieving factors char-
acterizing the filtering properties of our membrane.

We found that application of different membrane
voltages greatly changes the permeability of themem-
brane as the membrane charge in the vicinity of the
nanopore can either attract the charged nanoparticles
to the channel thereby decreasing the membrane
resistance or repel them. This electrostatic blocking
or opening of the nanopore has direct repercussions
on the filtration of particles as it becomes possible with
our voltage controlled membrane to greatly vary the
filtering selectivity to the size of nanoparticles as well
as the filtration rate (both by a factor of 10).
In this work, we assessed the filtering capabilities

of our membrane when the nanometer sized particle
dynamics is affected only by the membrane charges
and voltages, i.e., we kept the electrolyte bias at zero.
When the electrolyte bias is applied, one would expect
that the differences in waiting times and membrane
resistances observed for different membrane bi-
ases will be washed out as the charged particles
will move along the electric field in the nanopore
(electrophoresis) produced by this bias, which could
be strong compared to the field from the membrane
charges. The electrostatic mechanism will probably be
also diminished in importance in larger pores as there
will be more room for the electrolyte charges to screen
out the membrane charges. However, when the elec-
trolyte bias is applied, another transport mechanism
appears due to the electroosmotic flow in the nano-
pore area. It exerts additional drag force on the nano-
particle, and the larger the particle, the stronger the
force, so that in larger pores it cannot be neglected.
For the positive membrane bias, when the nanopore
is filled with Cl� ions, this flow should carry the
nanoparticle to the membrane so that it will be cap-
tured faster (membrane permeability increases). On
the other hand, for the negative bias, the flow is
predominantly due to the potassium ions, whichmove
in the opposite direction and push the nanoparticle
away from the pore (membrane permeability
decreases).
Previously similar mechanism of the reversal of the

electroosmotic flow was theoretically discussed35 in
connection with slowing down DNA in the nanopore,
and recent experimental study36 also showed that the
flow can also be controlled by changing pH of the
solution. The inversion of the electroosmotic flow
direction considered in this work is the unique feature
of our n-Si membranewith its voltage tunable effective
charge,24 and its effects on the filtering of larger
macromolecules such as proteins will be discussed in
our subsequent works.

METHOD
Simulated Structure. Our simulated system is schematically

shown in Figure 7. We consider a cylindrical nanopore with

diameter Dpore = 4 nm in the 26-nm-thick semiconductor

membrane (Lm = 26 nm) consisting of a 24-nm-thick layer of

the n-doped Si material covered by a 1 nm-thick layer of silicon

Figure 7. Schematic representation of the simulated sys-
tem. To initiate translocation, a nanoparticle is placed in the
bounding box with dimensions Hb = 10 nm, Db = 8 nm
positioned atop the nanopore. This volume corresponds to
the concentration of the nanoparticles of 30 μM.
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dioxide SiO2.
10 The membrane is immersed in an electrolyte

solution (KCl) with concentration CKCl = 0.05M corresponding to
the Debye screening length LD ≈ 1.3 nm. Since 2LD < Dpore, we
can apply the continuum approach to describe electrostatic
potential and charge distribution in our membrane�electrolyte
structure as it was done in previous studies.37,38

Electrostatics. The charges in the membrane and the electro-
lyte aswell as the applied external biases create the electrostatic
potential j(rB) in the system, in which the simulated particle
then moves. To find this potential, we solve the Poisson
equation39

r[ε(rB)rj(rB)] ¼ �F(rB) (9)

with the device boundary conditions, i.e., the normal compo-
nent of the electric field is zero on the lateral surfaces of the
simulated volume and the potential j is constant on the top
and bottom ones (above and below membrane). In eq 9, F(rB) is
the charge density, ε(rB) = ε0εr(rB), and the dielectric permittivity
εr = 11.7 for Si, 3.9 for SiO2, and 78 for the electrolyte (ε0 is the
permittivity of the free space).

The charge density F(rB) in the n-Si membrane is

F(rB) ¼ �e[n(rB) � Nþ
D (rB)þNs(rB)] (10)

where n(rB) is the concentration of electrons which obeys Fermi-
Dirac statistics40 with the Fermi level that is shifted by eVm.ND

þ(rB) =
2 � 1020 cm�3 is the donor density in the semiconductor,
whereas Ns(rB) = 4 � 1020 cm�3 represents the density of the
fixed surface charge in the SiO2 layer on the membrane. To
model the interface between the membrane and the electro-
lyte, we also use the offsets between the conduction bands of
3.2 eV for SiO2 and �0.3 V for electrolyte with respect to Si.10

The charge density F(rB) in the electrolyte is given by

F(rB) ¼ e[CKþ (rB) � CCl� (rB)] (11)

At room temperature, the electrolyte is a fully dissociated KCl so
that in the absence of an external potential CKþ = CCl� = CKCl. At
equilibrium, when no bias is applied to the electrolyte,
concentrations of potassium and chlorine ions, CKþ(rB) and
CCl�(rB), in eq 11 obey Boltzmann statistics:

CKþ (rB) ¼ CKCl exp
ej(rB)
kT

" #
(12)

CCl� (rB) ¼ CKCl exp � ej(rB)
kT

" #
(13)

In this work, we apply the membrane voltage Vm =( 1 V to
study how the membrane affects the capture and transport of
nanoparticles. However, to simplify consideration and to focus
on the membrane induced effects, we do not apply the
electrolyte bias; thus, the main translocation mechanism of
the nanoparticles is the (hindered) diffusion through the nano-
pore. When the electrolyte bias is present, two other transport
mechanisms appear due to the electrphoresis and electro-
osmosis; their possible repercussions on the filtering of nano-
particles are briefly discussed in the Conclusion.

Brownian Dynamics. To describe the nanoparticle dynamics,
we utilize the Brownian Dynamics (BD) approach.41 In this
approach, we first coarse-grain the simulated object; that is,
we neglect its full atomic structure and replace it with a
collection of suitably chosen and positioned beads while main-
taining the total charge on the object. In case of a spherical
nanoparticle, these beads are positioned in a simple cubic
lattice, and each carries the same charge qi = �1e/Nb, i = 1, ...,
Nb, where Nb is the total number of beads. This charge distribu-
tion implies that the whole nanoparticle is uniformly charged
with the total charge �1e. While this approach at first seems to
be time-consuming and even redundant for a spherical uni-
formly charged nanoparticle (which can simply be treated as
one bead of a given radius), it allows us future flexibility in
describing other nanoscale objects with the nonuniform charge
and density distribution such as proteins. The larger the number

of beads, the more detailed description of the object's
charge density is in principle possible. In this work, we placed
beads in the nanoparticle at 0.3 nm apart, which means that
the particle of diameter 3.2 nm (the largest considered in this
work) has Nb = 619.

In the BD approach, the stochastic motion of the simulated
object is usually described with the Langevin equation.42 The
crucial assumption of our BD model is the rigidity of the
simulated object; that is, the beads once placed at their initial
positions FBi do not change the distance with respect to the
center of mass (COM) of the object. As such, we may consider
the Brownian motion of the COM point only.

Thus, neglecting acceleration, we first discretize the trans-
lational Langevin equation that determines the COM position
RB(t) in the fixed system of reference connected with the
membrane at time t as follows:

RB(t) ¼ RB(t �Δt) � ∑
Nb

i¼ 1
riU[rBi(t �Δt)]

Δt

ξ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ΔtkBT

ξ

s
nB

(14)

where the second termon the right is the net force acting on the
nanoparticle, ξ= 6πηRnc is the drag coefficient experienced by a
spherical nanoparticle of radius Rnc moving in a solution with
viscosity η = 10�3 Pa s, Δt = 0.5 ps is the time increment of
simulations, T= 300 K, and kB = 1.38� 10�23 J/K. The last term in
this equation is the random force, which is responsible for the
stochastic motion of the particle with nB being the 3D random
unit vector with components uniformly distributed in the
interval [�1,1].

After determining RB(t), the bead positions in the fixed
frame, rBi, are updated at each time step as

rBi(t) ¼ RB(t)þ FBi , i ¼ 1, :::, Nb (15)

The potential energy U(rBi) of the individual bead in eq 14
has two contributions

U(rBi) ¼ Um þ qij(rBi) (16)

corresponding, respectively, to the short-range Lennard-Jones
(LJ) interaction energy due to the interaction between the
beads and the membrane surface (Um) and external electro-
static energy (qij) due to charges in the semiconductor mem-
brane and electrolyte.

To describe interaction with the membrane, instead of
representing the membrane by a collection of atoms,43,44 we
use a continuous LJ potential:12

Um ¼ εm
σm

di

� �6

� 2
σm

di

� �12
" #

(17)

where σm = 2.5 Å and εm = 0.1 kcal/mol are the equilibrium
distance and the minimum value of the LJ potential, respec-
tively, and di is the distance between the i-th bead and the
nearest point on the membrane surface. In case of a chemically
modified surface or a different chemical composition of the
nanoparticle or the protein, it may be necessary to sample local
regions of the membrane or the simulated particle to properly
describe interaction between the studied object and the sur-
face; this procedure can be easily incorporated in our model by
modifying values of σm and εm accordingly.

Effect of the electrostatic interaction between the beads
and charges in the membrane and on its surface is captured by
the second term in eq 16 in which the electrostatic potential
j(rBi) is calculated from eq 9. As shown in the previous section,
this long-range potential arises from the electrolyte charge, the
static surface charge, bulk membrane dopant charges 9both
fixed and mobile, see eqs 10 and 11), and the external mem-
brane biases Vm, with the last two contributions being unique to
our semiconductor membrane.
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